
Interface 1bis for the Sinclair ZX Spectrum 48k Ver 4b-4c
Operating system reference 30.06.2020

1. General

1.1 Compatibility

The 'Interface 1bis' is software compatible with the Sinclair 'ZX
INTERFACE 1' at BASIC command as well as at 'hook-code' level

Necessary pre-conditions
- Same mechanism to extend the BASIC interpreter: paging a 'shadow' ROM
in place of the BASIC ROM, whenever a syntax error is encountered

- Same 'extended BASIC' syntax
- Same system variables
- Same mechanism to access shadow ROM routines: 'Hook codes'
- Same data structures for handling sequential files: 'M channel' and
network communication: 'N channel'

1.2 Memory layout

When activated, the interface disables the internal PROM of the ZX
Spectrum and pages in its own operating system (OpSys), which resides in
two contiguous 16 KB NVSRAM banks with the following layout:

Bank Offset Size Address Write protected

BASIC ROM #0000 #4000 #0000 Yes

Shadow ROM #4000 #2E00 #0000 Yes
Work RAM #6E00 #0200 #2E00 No
Buffers #7000 #1000 #3000 No

1.2.1 The 'BASIC ROM'
is a slightly modified copy of the ZX Spectrum 48k ROM, the scope of the
changes being restricted to:
- enabling software-controlled memory paging by means of input/output
operations to dedicated ports

- trapping the calls to the tape routines, to handle .TAP files,
- modified NMI handling, to allow the creation of (.Z80) snapshots,
and optionally:
- integration of an ESC/P printer driver in the ZX Spectrum BASIC
- fixing some known ZX Spectrum 48k ROM bugs.

1.2.2 The 'shadow ROM'
The shadow ROM is fully compatible with the 8 KB ROM of the original
Sinclair 'ZX INTERFACE 1' at BASIC command and 'hook code' level
- Following hook codes are not implemented:

Code Function

#33 Read next header

1.2.3 The 'work RAM'
- The 'work RAM' is structured as below:

Address Block Bytes

#2E00 Variables 128
#2E80 Internal stack 64
#2EC0 Printer buffer 64
#2F00 Page buffer 256

- The internal stack is used when handling (.Z80) snapshots or loading
(.TAP) tape files.

1.2.4 Buffers
- There are seven 512 bytes sector buffers, a 256 bytes 'application
data' area and a 'current directory table'

2. The extended BASIC

2.1 Syntax

All 'ZX INTERFACE 1' extended BASIC statements are accepted in their
original format, while some syntax enhancements are implemented.

2.1.1 CAT [#<str>;]{*}[<dev>;][<drv>][;<fil>|<pth>] [ABS|NOT|LN]
2.1.2 CLEAR #
2.1.3 CLOSE #<str>
2.1.4 CLS #
2.1.5 ERASE <spe>|#<hdl>
2.1.6 FORMAT [#<csz>;]{*}[<dev>;][<drv>] [NOT]
2.1.7 FORMAT [#<rsd>;]{*}[<dev>;] 0 [NOT]
2.1.8 FORMAT "B";<brt>
2.1.9 FORMAT "N";<sta>;<sid>
2.1.10 INKEY$ #<str>
2.1.11 INPUT #<str>,<var>
2.1.12 LOAD <chn>|#<hdl> [<opt>]
2.1.13 LOAD [[*<dev>;]<drv>];<pth>
2.1.14 LOAD STOP
2.1.15 MERGE <chn>|#<hdl>
2.1.16 MOVE <spe>|<nfc>|#<str> TO|AT|OVER|IN|MERGE <spe>|<nfc>|#<str>
2.1.17 MOVE #<str>|#<hdl> VAL
2.1.18 MOVE #<str>|#<hdl> POINT [<pnt>]
2.1.19 OPEN #<str>;{*}[[<dev>;]<drv>];<fil> [IN|OUT|OVER|RND]
2.1.20 OPEN #<str>;<nfc>
2.1.21 PRINT #<str>;<exp>
2.1.22 SAVE <chn>|#<hdl> [<opt>]
2.1.23 SAVE [[*<dev>;]<drv>];<pth>
2.1.24 SAVE STOP
2.1.25 VERIFY <chn>|#<hdl> [<opt>]
2.1.26 VERIFY STOP

Where: <str> = Stream (0-15)
<hdl> = Handle (0-15)
<chn> = Channel

= [*<dev>;][<drv>];<fil>
<nfc> = Non-file channel

= {*}"B"|"T"
= {*}"N";<sta>

<spe> = Specifier
= {*}[<dev>;][<drv>];<fil>|<pth>

<dev> = Device specifier
= <typ>[<sta>]

<typ> = Device type literal
= "M" - flash "M"icrodrive
= "R" - "R"AM drive
= "V" - ser"V"er drive

<sta> = Station (device) number (0-7)
= 0 - Local
= 1..7 - over IP network

<drv> = Drive number (1-255)
<fil> = File (1-254 characters)

= [<pth>]<nam>[.<fty>]
<dir> = Directory (1-254 characters)

= <nam>/
<pth> = Path (1-254 characters)

= [/]<dir><dir>..<dir>
<nam> = Name (1-254 characters)
<fty> = File type literal (1 character)

defined at 3.4
<opt> = SAVE, LOAD or VERIFY options

= LINE <lin>
= DATA <ary>[$]()
= CODE [<add>[,<len>{,<pnt>}]]
= SCREEN$
= BIN [<add>[,<len>[,<pnt>]]]

<lin> = Auto-run line number (0-9999)
<ary> = Array name
<add> = Memory block address (0-65535)
<len> = Memory block length (0-65535)
<pnt> = File pointer

= <rec>[,<pos>]
<rec> = Record number (0-32767)
<pos> = Position within a record (0-511)
<var> = BASIC variable
<exp> = BASIC expression
<csz> = Allocation unit in sectors/cluster (2,4,8,16)
<rsd> = Number of reserved drives (1 - 127)
<brt> = Baud rate in bit/s (0-65535)
<sid> = Name or IP address (1-254 characters)

- Syntax elements in square brackets are optional
- Syntax elements in curly brackets are accepted but not used
- Alternative syntax elements are separated by a vertical bar
- A (file) 'handle' is a stream opened to a file, using the option RND
- The position within a record: <pos> may be specified in the range
(0-65535), because the pointer is always automatically normalized:
<rec> = <rec>+int(<pos>/512)
<pos> = mod(<pos>,512)

- A leading '*' not followed by a device type literal stands for: "M"
- A leading '@' not followed by a device type literal stands for: "E"
- A leading '!' stands for: "R";1 and a leading '$' for: "V";1

2.2 Devices and Channels

2.2.1 Storage devices

2.2.1.1 "M" (0) SD card block device
2.2.1.2 "E" (1) Tape player EAR port block device
2.2.1.3 "R" (2) RAM drive block device
2.2.1.4 "V" (3) Server file device

2.2.2 Communication devices

2.2.2.1 "B" (4) Asynchronous serial port
2.2.2.2 "N" (5) 10Mbit/s Ethernet

2.2.3 Channels

2.2.3.1 The 'Microdrive' channel: "M"
- The M channel provides buffered character input/output from/to the
supported storage devices
- It is compatible with the 'Microdrive' channel of the original 'ZX
INTERFACE 1', having the same descriptor structure

2.2.3.2 The 'RS-232 Interface' channels: "B" and "T"
- These channels are by default implemented as output-only. Any input
operation produces an error report
- Channel B sends binary data directly to the printer spooler while
channel "T" behaves identically to channel "P"
- When a suitable cable is plugged into the mouse and joystick sockets
channel B can be used for duplex asynchronous serial communication.
- Only the OPEN#, CLOSE# and FORMAT commands are implemented, while
SAVE, LOAD,VERIFY and MERGE are not.

2.2.3.3 The 'Local Area Network' channel: "N"
- The N channel provides buffered character input/output over a network
- It is compatible with the original 'ZX INTERFACE 1' implementation
- Only the OPEN#, CLOSE# and FORMAT commands are implemented, while
SAVE, LOAD,VERIFY and MERGE are not.

2.2.3.4 The 'Handle' channel: H
- An 'H channel' is created by opening a stream to a file, using the
option RND. Its descriptor is identical to bytes 0-30 of the M channel
descriptor
- Such a stream can be used as a 'handle' to specify the associated
file in LOAD, SAVE, VERY, MERGE and ERASE statements

2.2.3.5 The 'NULL' channel: U
- Provides no input and discards any output

2.3 File names

- Full names may be composed of segments, separated by "/". The last
segment represents the actual filename, while all the other make up the
path. For a block device, only the first 10 characters of a segment are
significant. The total length of the path is limited to 254 characters
- A name ending with a "/" represents a directory name
- Filenames may have a trailing 'file type literal', separated by a ".",
as an extension
- A leading "/" stands for the root directory of the disk and a "../"
for the parent directory
- For a file device, "/A/", "/C/".."/Z/" represent the drives A,
C .. Z of the server. The alternative form "a:/".. is also accepted.
- When not creating a new file, the wild cards "?" (standing for "any
character") and "*" (standing for "any number of characters") may be
used in regular names, execpt for those of channels and handels, but not
in directory or path names
- Filenames are case-insensitive

2.4 File types

2.4.1 'BASIC' files

Type Literal Description Extension

0 P BASIC program ZZP
1 N Number array ZZN
2 A String array ZZA
3 C CODE block ZZC

- To allow access via the SAVE, LOAD and VERIFY commands these
files contain a 9-byte header, with the following structure:
0 File type (0-3)
1-2 File length (excluding the header)
3-4 Loading address (Code)
5-6 Length of program only (Program)

Array name (Numeric or String)
7-8 Start line (Program)

2.4.2 'Regular' files

Type Literal Description Extension

4 F PRINT file ZZF
5 E Text file ZZE
6 K Backup file ZZK
7 B Binary file ZZB

- The maximum length of a regular file is 16 MByte
(32768 records of 512 bytes each).

2.4.2.1 PRINT file (type 4)
- PRINT files are implemented as in the original ZX INTERFACE 1
extended BASIC, to be accessed via the OPEN#, PRINT#, INKEY$# and
INPUT# commands

2.4.2.2 Text file (type 5)
- A 'Text' file contains no control characters besides CR and LF and
has all BASIC tokens expanded
- When writing (PRINT#) to a stream opened to a 'text file', a LF is
automatically inserted after each CR
- When reading (INPUT#) from a stream opened to a 'text file', any LF
following a CR is discarded

2.4.2.3 Backup file (type 6)
- 'Backup' files are copies of files of any other type
2.4.2.4 Binary file (Type 7)
- 'Binary' files have no specific structure

2.4.3 'Emulator' files

Type Literal Description Extension

8 S Screen dump SCR
9 X 'ZX Tape' file TZX
10 T Tape file TAP
11 Z 'Z80' snapshot Z80

2.4.3.1 Screen dump (type 8)
- A 'Screen dump' represents the contents of the video RAM, having the
default loading address of: #4000 and the default length of: #1B00,
- Screen dumps are loaded or saved specifying the file type by means of
the filename extention '.s'

2.4.3.2 'ZX Tape' file (type 9)
- A file in 'TZX' format, containing only type #10, #2A, #30 and #32
blocks, can be assigned as an 'input tape', via a LOAD command,
specifying the file type by means of the filename extension '.x'

2.4.3.3 'Tape' file (type 10)
- A 'tape' file is opened for input or output via the LOAD or respec-
tively SAVE statement, specifying the file type by means of the filename
extention '.t', after which, all BASIC tape input or output is redirec-
ted to the specified file, until the end of the 'input tape' is reached,
the length of the 'output tape' exceeds 16 MB or the file is closed,
using the LOAD or respectively SAVE command with the option: STOP
- A reset or even a power-off does not close the tape files.
- Opening the 'input tape' to a non-existing file will generate the
error report "File not found"
- Opening the 'output tape' to a non-existing file will create the file
- Opening the 'output tape' to an existing file will append to the file
- The 'input tape' and 'output tape' can be simultaneously opened to the
same file, but the blocks appended after the 'input tape' was opened,
will not be accessible until the 'input tape' is closed and re-opened
- Opening the `input tape' using the extension '.T' (or '.X') will
immediately perform the equivalent of NEW, followed by LOAD"".

- When device "E" is specified, a tape file can be loaded from the
audio signal produced by the interface, via the Spectrum's 'EAR'input,
if a suitable cable is connected.

2.4.3.4 (.Z80) Snapshot file (type 11)
- (.Z80) snapshot files are launched using the LOAD command, specifying
the file type by means of the filename extention '.z'
- After loading a snapshot with the extension '.Z' (capital) the inter-
face will switch to the 'ON - inactive' state
- To create a version 1.45 48k snapshot, a file must be first opened
using the SAVE command specifying the file type by means of the filename
extention '.z', after which, generating a NMI saves the snapshot and
if CAPS SHIFT is not pressed, closes the corresponding file
- Closing can also be forced using the VERIFY command with the option:
STOP, but the resulting file will have no usable content
- A reset or even a power-off does not close the snapshot file
- If the extention '.Z' (capital) is specified, a version 3.05 snapshot
is created, for 'hardware mode' 128k, if possible, or 48k otherwise

2.4.3.5 Applying 'POKEs'
- If bit 0 of (AX_FLG) is set, (BUFF_P) is expected to contain a list of
'POKEs', in the following format:

Offset Description

0 Flag - if #FF marks end of list
1-2 Address
3 Data

to be automatically applied, after loading a snapsot. For tape files,
the POKEs are applied only when a NMI is triggered, while the SYMBOL
SHIFT key is being pressed

2.4.4 Reserved file types

Type Literal Description Extension

12 Reserved
13 Reserved
14 Reserved
15 Y Any type *

- Type numbers: 12,13 and 14 are reserved
- Type number 15 is the 'type wild card', standing for "Any type"

2.4.5 Directories (type 16)
- Directories are special files, accessed via the commands LOAD,
standing for 'change', SAVE, standing for 'create' and DELETE

2.5 Error messages
The error messages are the same as those of the original ZX INTERFACE 1,
except for the following:

- #07: "Missing name" not used
- #08: "Missing station number" not used
- #09: "Missing drive number" not used
- #0A: "Missing baud rate" replaced by "Communication error"
- #0B: "Header mismatch error" replaced by "Directory in use"
- #13: "Hook code error" replaced by "File exists"
- #15: "MERGE error" replaced by "Invalid path"
- #17: "Wrong file type" not used

2.6 Other syntax issues

2.6.1 Default values
- The default values for the device literal <dev>, volume literal <sta>
and drive number <drv> are the ones last specified in a statement
- For statement 2.1.1, the default value of <str> is: 2
- For statement 2.1.6, the default value of <csz> is the one stored on
the media when the drive was last formatted, or otherwise: 8

2.6.2 The CAT command
- The file list produced by the CAT statement has following layout:
Column 1-10 Filename

12 File type literal
14-21 File length in bytes
23-27 Auto start line (Program)

Array letter (Numeric or String)
Loading address (Code)

- The number of free sectors available on the drive is given as the
product of the number of free clusters and the cluster size
- If no name is specified, all files in the current directory are
catalogued
- If a name is specified, then its path indicates the directory to be
catalogued and the filename and extension are used as filters for the
output of the command, whereby the extension '.d' is accepted, to
display only direcrories
- If followed by the token ABS, the CAT command outputs only the abso-
lute path
- If followed by the token LN, the CAT command outputs a long-name file
list of a file device directory
- If the specified drive number is 0, then the name is considered a
command and is sent to the peripheral port, to be interpreted by either
the server, if it ends in a "/", or otherwise by the peripheral
controller. After processing the command, these are expected to send a
response, which is printed out as hex-dump, if not supressed by a NOT
option token

2.6.3 The FORMAT command
- The statement 2.1.6 and 2.1.7 do not apply to file devices.
- The statement 2.1.7 for device "M", identifies the flash card and sets
the number of reserved logical drives if a <rsd> value is specified.
For device "R", it clears the application data area and the 'current
directories' table.
- The option token NOT supresses the screen output.
- The allowed values of the cluster size in statement 2.1.6 are: 2,
4, 8 and 16. Any other number is disregarded and the default value: 8
is used instead
- The baud rate specified in statement 2.1.8 is rounded up to the next
standard value in the set: 300, 600, 1200, 2400, 4800, 9600, 19200,
57600, 115200

2.6.4 The MOVE command
- If both source and destination are files, the operation is performed
sector by sector, rather than byte by byte.
- If source and destination device and logical drive are the same, the
source file can be renamed, if source and destination are located in the
same directory, or otherwise moved. Following separators can be used:
+-----------+-------------+--------------------------+
| Separator | Operation | Overwrite existing files |
+-----------+-------------+--------------------------+
| TO | copy | No |
| OVER | copy | Yes |
| AT | move/rename | No |
| IN | move/rename | Yes |
| MERGE | append | |
+-----------+-------------+--------------------------+
- Both source and destination file names are considered from the
perspective of the current location: device, drive, directory
- The statement 2.1.16 is repetitive. It processes all files that match
the specified source name.
- The statement 2.1.17 copies the record pointer and the record number
of the file, to which the stream is currently opened, to the system
variables: HD__0F and respectively HD__11
- The statement 2.1.18 sets the file pointer of the file, to which
the stream is currently opened, to a specified position
If the stream is opened to a "M" channel and the specified position
is out of range, the file pointer is set to EOF

2.6.5 The OPEN command
- Any file can be opened for sequential access, not only PRINT files
- The optional keywords IN, OUT or OVER force the opening of the file
for reading or respectively writing
- Opening a non-existing file for reading, using option IN, generates
the error report "File not found"
- Writing to an existing file will either append to it, if it was opened
with option OUT, or overwrite it, if option OVER was used.

- Opening a file with the option RND creates a random access 'handle'
for that file

2.6.6 The SAVE, LOAD and VERIFY commands
- The auto-run feature can be suppressed by specifying the file exten-
sion '.p' (lower case) when loading a program
- The option BIN allows to load, save or verify a memory block from/to
a given position of any type of file
- If the file is accessed via a 'handle' rather than a specifier,
the pointer entered with the option BIN is not used, but instead the
one stored in the corresponding "H" channel descriptor, which is set
to 0 when the file is opened and subsequently updated automatically
following each operation.

2.6.7 The ERASE command
- The form: ERASE <fsq> is repetitive. It processes all files that match
the specified name.

2.6.8 The printer commands.
- The printer commands: LPRINT, LLIST and COPY work as expected with
a ESC/P printer.
- The block graphics and UDG characters are printed as bitmaps at a
density of 80 DPI.
- The system variables P_POSN and PR_CC are used as follows:

Variable Address Length Description

P_POSN #5C7F 23679 1 Column number
PR_CC #5C80 23680 1 Lines per page minus Line number

#5C81 23681 1 Bit 7 reset = 64 columns
set = 32 columns

Bits 0-6 = Lines per page

- OPEN #<str>,"P" sends an initialization string to the printer
- While the interface is connected to a server PC, the print jobs are
forwarded to the server application, which directs them to a printer or
a spool file.

3. Data structures

3.1 The ZX INTERFACE 1 system variables

Variable Address Length Replaces

FLAGS3 #5CB6 23734 1
VECTOR #5CB7 23735 2
..
SER_FL #5CC7 23751 2
..
DRV_NR #5CD6 23766 1 D_STR1
PTH_LN #5CD7 23767 1
STR_NR #5CD8 23768 1 S_STR1
DEV_LT #5CD9 23769 1 L_STR1
NAM_LN #5CDA 23770 1 N_STR1
FIL_TY #5CDB 23771 1
NAM_AD #5CDC 23772 2 P_STR1
DRV_N2 #5CDE 23774 1 D_STR2
PTH_L2 #5CDF 23775 1
STR_N2 #5CE0 23776 1 S_STR2
DEV_L2 #5CE1 23777 1 L_STR2
NAM_L2 #5CE2 23778 1 N_STR2
FIL_T2 #5CE3 23779 1
NAM_A2 #5CE4 23780 2 P_STR2
HD__00 #5CE6 23782 1 HD_00
HD__0B #5CE7 23783 2 HD_0B
HD__0D #5CE9 23785 2 HD_0D
HD__0F #5CEB 23787 2 HD_0F
HD__11 #5CED 23789 1 HD_11
HD__DV #5CEE 23790 1
HD__DR #5CEF 23791 1 COPIES

- The variables not shown are not used

3.1.1 FLAGS3
Bits 0-4 have the same significance as in the original ZX INTERFACE 1
'Shadow ROM'
- Bit 0 Shadow ROM entered the second time for the same error
- Bit 1 Shadow ROM entered the first time after creation of the new

system variables, or
CLEAR# command in progress

- Bit 2 Shadow ROM entered by means of a hook-code
- Bit 3 CAT command in progress
- Bit 4 Character by character MOVE command in progress, or

Destination name in MOVE command contains wild cards, or
A filename was specified in the CAT command, or
Suppress auto-run of a loaded BASIC program, or
SAVE / LOAD option specified in upper case

- Bit 5 H(andle) channel SAVE / LOAD / VERIFY in progress
- Bit 6 Find the 'last match' in a search operation
- Bit 7 Find the 'next match' in a search operation

3.1.2 VECTOR and SER_FL
Same as in the original ZX INTERFACE 1 'Shadow ROM'

3.1.3 File specifiers
The two 8-byte file specifiers at DSTR_1 and DSTR_2 have the same
function as in the original ZX INTERFACE 1 'Shadow ROM', except for the
drive number's high byte, which is used to store the path name's length
and the file name's length high byte, which is used to store the file
type

3.1.4 BASIC header: HD__00 .. HD__11
Same as in the original ZX INTERFACE 1 'Shadow ROM'

3.1.5 HD__DV and HD__DR
Replace HD_11 high byte and COPIES. Store the device and drive number

3.2 The M channel descriptor

Offset Name Description

0 Address of error handling routine (0008)
2 Address of error handling routine (0008)
4 Channel type ("M" or "M"+128 for 'ad-hoc' channels)
5 Address of output subroutine
7 Address of input routine
9 Length of channel (595)
11 CHBYTE Record pointer (0-512).
13 CHREC Record number, lower byte
14 CHNAME 10 byte filename with trailing spaces
24 CHFLAG Flag byte: bit 0 - file open for write

bit 1 - file doesn't exist
25 CHDRIV Drive number
26 CHMAP - Parent directory number, for a block device, or

- File handle, for a file device
28 File type literal.
29 Record number, upper byte.
30 Device code

.. Not used

67 RECFLG Flag byte: bit 0 = 0
bit 1 = last record
bit 2 = not a PRINT file

68 RECNUM Not used
69 RECLEN Number of bytes of data in the current record (0-512)
71 RECNAM Not used
81 DESCHK Not used
82 CHDATA 512 bytes of data
594 DCHK Not used

3.3 The N channel descriptor

Offset Name Description

0 Address of error handling routine (0008)
2 Address of error handling routine (0008)
4 Channel type ("N" or "N"+128 for 'ad-hoc' channels)
5 Address of output subroutine
7 Address of input routine
9 Length of channel (276)
11 NCIRIS Destination station number
12 NCSELF Not used
13 NCNUMB Block number
15 NCTYPE Packet type code... 0 data, 1 EOF
16 NCOBL Number of bytes in the data block
17 NCDCS Not used
18 NCHCS Not used
19 NCCUR Position of the last character taken from the buffer
20 NCIBL Number of bytes in the input buffer
21 NCB 255 byte data

3.4 The 'Work RAM' (512 bytes)
Mapped at address #2E00 of the 'Shadow ROM'

3.4.1 Main logical drive descriptor (13 bytes)
#2E00 CRT_DV Current device code
#2E01 CRT_DR Current drive number
#2E02 PRV_DV Previous device code
#2E03 PRV_DR Previous drive number
#2E04 CLU_SZ Cluster size - 1
#2E05 RES_DR Number of reserved logical drives
#2E06 ROOT_D First sector number of root directory
#2E07 ALC_SN Number of last allocated sector
#2E09 ICL_SN In-cluster sector number
#2E0B FAT_SN Pointer to the FAT sector number

3.4.2 Alternate logical drive descriptor (13 bytes)
Same structure as the main descriptor
#2E0D ALT_DV

3.4.3 Default block and file device numbers (2 bytes)
#2E1A DEF_ST

3.4.4 Flash media sizes, in logical drives (8 bytes)
#2E1C FLA_DN

3.4.5 Spare initialized variable space (12 bytes)
#2E24 VARS_E Spare initialized variables

3.4.6 Sector buffer pointers (16 bytes)
#2E30 SECT_0 Pointer for buffer 0
#2E32 SECT_1 Pointer for buffer 1
#2E34 SECT_A Pointer for buffer A
#2E36 SECT_3 Pointer for buffer 3
#2E38 SECT_L Pointer for buffer L
#2E3A SECT_S Pointer for buffer S
#2E3C SECT_F Pointer for buffer F
#2E3E SECT_Z Parent directory number

3.4.7 'Output tape' variables (10 bytes)
#2E40 S_FLAG Flag
#2E41 S_FSEC First sector
#2E43 S_DIRN Directory nr
#2E45 S_PNTR Record pointer
#2E47 Not used
#2E48 S_DEVN Device code
#2E49 S_DRVN Drive number

3.4.8 'Input tape' variables (10 bytes)
#2E4A L_FLAG Flag
#2E4B L_FSEC First sector
#2E4D L_FPNT Record pointer
#2E4F L_LENL Length (low)
#2E51 L_LENH Length (high)
#2E52 L_DEVN Device code
#2E53 L_DRVN Drive number

3.4.9 Snapshot variables (10 bytes)
#2E54 Z_FLAG Flag
#2E55 Z_FSEC First sector
#2E57 TMP_HL Temporary store for
#2E59 TMP_AD the HL registers
#2E5B Z_TYPE Snapshot type
#2E5C Z_DEVN Device code
#2E5D Z_DRVN Drive number

3.4.10 Printer buffer pointer (2 bytes)
#2E5E PBF_PT

3.4.11 File device descriptor (16 bytes)
#2E60 N_DESC File type
#2E6B N_HNDL File handle
#2E6D N_FLEN File length

3.4.12 Auxiliary (4 bytes)
#2E70 AX_FLG Flags
#2E71 AX_CMD Control
#2E72 AX_ERR Error
#2E73 Station

3.4.13 Flash drive block number (6 bytes)
#2E74 BLK_LO Low word
#2E76 BLK_HI High word
#2E78 DAT_LN Data length

3.4.14 Copy/Rename destination file parameters (5 bytes)
#2E7A DST_TY File type
#2E7B DST_LN Filename length
#2E7D DST_AD Filename address

3.4.15 Temporary Filename buffer (11 bytes)
#2E7F TMP_TY Type
#2E80 TMP_NA Name

3.4.16 Directory entry location (6 bytes)
#2E8A D_NUMB Directory number
#2E8C D_SECT Sector number
#2E8E D_PNTR Pointer

3.4.17 Internal Stack (48 bytes)
#2E90 ST_BOT Stack bottom

3.4.18 Printer buffer (64 bytes)
#2EC0 PR_BUF

3.4.19 Page buffer (256 bytes)
#2F00 PAGE_B

3.5 Sector buffers (4 KB)

3.5.1 Sector buffers
#3000 BUFF_0 Main sector
#3200 BUFF_1 Allocation
#3400 BUFF_A Alternate FAT
#3600 BUFF_3 Work
#3620 BUFF_P POKE buffer
#3800 BUFF_L 'Input tape'
#3A00 BUFF_S 'Output tape'
#3C00 BUFF_F Main FAT

3.5.2 Application data (256 bytes)
#3E00 AP_DAT

3.5.3 Current directories table (256 bytes)
Stores the last 64 block device directories used
#3F00 DIR_TB

4. Peripheral Controller

All Data Input/Output operations are handled by sending commands
to the interface's peripheral controller

4.1 Communication protocol

4.1.1 The structure of the command block is:

Byte Nr. Description

Header 0 Command byte: bits 0-3 = command parameter

bits 4-7 = command code
1 Control byte: bits 0-2 = station number

bits 3-7 = flags
2,3 Length of data: n = 0-512

Data 4..(n+4) (n) bytes of data

4.1.2. After processing the command, the peripheral controller
sends back a 'reply block':

Byte Nr. Description

Header 0 Error code or: 0 = No error

1 Flags
2,3 Length of data: n = 0-512

Data 4..(n+4) (n) bytes of 'reply' data

4.2 General Commands

Code Command Parameter Data Response

13 Server command 0 Command Result
14 Receive-Transmit 0
15 Peripheral command 0 Command Result

The Receive-Transmit command relays data blocks from a
a file opened for reading on a file device, to a new file
created on a different file device.

4.3 Server Commands

Code Command Parameter Data Response

13 Request OpSys 1 Sector
13 Dump OpSys 2 Sector
13 Print buffered data 3 Data
13 Set page 4 Dir,Pag Dir Info
13 Get next line 4 Type,Name
13 Search from line 4 Line Pag,Line
13 Get file 5 Type,Name Type,Name
13 Update index 6
13 Set search string 6 String
13 Send chat message 7 Message
13 Receive chat message 8 Message

- The 'Update index' command creates a new index for an
online archive
- The 'Set page' command sets the current position of an
online archive index, from which subsequent 'Get next line'
commands retrieve file names and types
- The 'Get file' command retrieves a file from an online
archive
- The 'Search from line' command searches the index of an
online archive for a string defined in a previous 'Set
search string' command

4.4 Communication port commands

Code Command Parameter Data Response

14 Serial port transmit 1 Data
14 Serial port receive 2 Length Data
14 Network port transmit 3 Data
14 Network port receive 4 Length Data
14 Link network station 5 Name/IP
14 Check network station 6

- The 'Serial port transmit' command sends 1-512 bytes of data
- The maximum number of bytes to be received by the 'Serial port
receive' command: 'Length' can be specified in the range (1-256)

- The data length for the network transmit and receive commands is
limited to 255 bytes

- The check network station command returns the Zero flag set if
the corresponding station is linked

5. File systems

Two different file systems are implemented for:
- Block devices: SD card flash memory and RAM drive
- File devices: Computers running a suitable server application

5.1 Block devices

A block device can be either:
- local (station 0): the on-board SD card or RAM drive, or
- remote (station 1-7): the SD card of a unit on an IP network

5.1.1 Filesystem features
- A SD card volume is implicitly partitioned into fixed-sized logical
disks of 32 MB (65536 sectors of 512 bytes).
- The size of a SD card volume is limited to 255 logical disks = 8 GB.
- The allocation unit (cluster) can be of: 2, 4, 8 or 16 sectors
- The FAT contains (65536 / cluster size) entries, occupying sectors
1 through (256 / cluster size).
- Sector number (256 / cluster size) + 1 contains the first record of
the root directory.
- The RAM drive has a capacity of 256 sectors = 128 KB. The cluster size
is of 1 sector. Sector 1 contains the FAT and sector 2 the first record
of the root directory.
- The logical drives are formatted according to a simplified 16-bit FAT
system, the FAT entries being sector, rather than cluster numbers.
- Sector number 0 of any logical drive is not used.
- As cluster 0 is always occupied by the FAT, the corresponding FAT
entry (bytes 0 and 1 of sector 1) is used to store the cluster size.
- As sectors 0 and 1 are not available for allocation, the correspon-
ding FAT entry values are used for marking:
0000 = Free cluster
0001 = Last cluster of the file

- Directories contain sequences of 16-byte 'file specifiers':
--
Offset Length Description
--
0 1 File type
1 10 File name
11 2 First sector of the file
13 3 File length
--
with the byte #FF as an end marker.
- The size of a (sub)directory is limited only by the available space
and the depth of the directory tree by the maximum length of the path
name: 255 bytes.
- The first entry of the first record of a directory has the following
structure:
--
Offset Length Description
--
0 1 Type: 16
1 10 Directory name
11 2 First sector of the parent directory, or

00 00 for the root directory
13 3 00 00 00
--
- When a file is deleted, the parent directory is compacted by reclaiming
the corresponding entry and shifting all further entries to its right,
which can span several records, downwards by 16 bytes.

5.1.2 Block device commands

Code Command Parameter Data Response

15 Play tape file 3 Add Len Typ
15 Receive - Write 4 Address
15 Set write address 5 Address
15 Read multiple blocks 6 Address
15 Align to block start 6
15 Read - Transmit 7 Address
15 Read single block 8 Address Sector
15 Read to buffer 9 Address
15 Write block 10 Sector
15 Write from buffer 11 Address
15 Identify card 12 Identifier
15 First erase address 13 Address
15 Last erase address 14 Address
15 Erase block 15

5.1.3 Notes
- 'Address' is a 4-bytes sector number
- A sector number with the highest bit (31) set, is interpreted as
a RAM drive address

- 'Identifier' is an 8-bytes card identifier string followed by the
4-bytes capacity (last sector number) of the card

- 'Sector' is a 512-bytes block of data
- Writing a sector requires two steps:
1. The sector number is specified in a 'Set write address' command
2. The data is sent via a 'Write sector' command

- The 'Write from buffer' writes the sector read by a previous 'Read to
buffer' command

- Erasing a block requires three steps:
1. The start of the block is specified in a 'First erase address'

command
2. The end of the block is specified in a 'Last erase address'

command
3. The 'Erase block' command is sent to actually erase the block

- The 'Receive - Write' command sends a 'Read sector' command to a
file device and writes the received block to the specified address
of a block device

- The 'Read - Transmit' command reads a block from the specified
address of a block device and sends it to a file device by issuing a
'Write sector' command

- After a 'Read multiple blocks' command, a stream of bytes can be read
at the rate of the INI instruction (16 T-states) until stopped by
re-issuing the command (with an arbitrary address). The read pointer
can be anytime advanced to the beginning of a block, by issuing the
same command without an address.

- The 'Play tape file' command needs as data:
Address of the file's first sector : 4 bytes
File length : 3 bytes
File type (#09 or #0A) : 1 byte

5.1.4 Large Sequential Files partition
- In order to accomodate multimedia files (types 12 -14), of up to 4GB
length, command 2.1.7 can be used to reserve <rsd> (1 - 127) logical
drives, for a 'Large Sequential Files' partition, which also includes
the SD card storage space exceeding the maximum volume size of 8 GB.
- The directory of the partition is stored starting at sector 0 of
logical drive: (<volume size in sectors>/65536 - <rsd> + 1) and spans 4
sectors containig a maximum of 128 entries with the following structure:
--
Offset Length Description
--
0 1 File type (12 - 14)
1 10 File name
11 2 00 00
13 3 File length (in sectors)
--
and the byte #FF as an end marker.
It is followed by files, stored contiguouly in the order in which they
appear in the directory
- The sector number of a files's first record needs to be calculated by
parsing the directory and adding 4 + the cumulated length of the pre-
ceding ones to the start of the partition

5.2 File devices

A file device can be either:
- local (station 0): a server machine connected via the USB port, or
- remote (station 1-7): a server machine on an IP network

5.2.1 File device commands
--
Code Command Parameter Data Response
--
0 Close File Handle
0 Open reserved handle Handle Type Handle,Size
1 Read sector Handle Sector
2 Write sector Handle Sector
3 Set file pointer Handle Position
3 Get file size Handle File size
3 Get handle info Handle Byte Handle,Size
4 Create temp. file Type Name Handle,Size
5 Create perm. file Type Name Handle,Size
5 Reserve handle 15 Name Handle
5 Get long name 1 Long name
5 Get disk free space 2 Free space
5 Set 'Overwrite'flag 3
5 LSQ file mode on 4
5 LSQ file mode off 5
6 Open temp. file Type Name Descriptor
6 Open next file 0-15 Descriptor
7 Open perm. file Type Name Descriptor
8 Find file Type Name Descriptor
8 Find next file 0-15 Descriptor
9 Delete file Type Name
9 Delete file Handle
10 Rename file Type Name
11 Copy file Type Name
12 First file list 0 Name List
12 First BASIC file list 1 Name List
12 First long name line 2 Name Line
12 Next file list/line 0-2 List/line
12 Get absolute path 3 Name Path
12 Get current path 3 Path
12 Select directory 13 Name
12 Make directory 14 Name
12 Remove directory 15 Name

5.2.2 Notes
- A 'Handle' is a number in the range: 0-15
- The 'Type' is a number in the range: 0-15 defined at (3.4)
- A 'permanent file' is allocated a handle = 1-15. The same handle is
not re-allocated before the file is explicitly closed.
- A 'temporary file' is always allocated the handle = 0. Creating or
opening another 'temporary file' automatically closes the previous one
- The 'Open reserved handle' function creates the file specified when
the handle was reserved, with the given type
- For the 'Set file pointer' command the position can be specified
either on two, or on four bytes: [<Pos>]<Rec>, where <Pos>= record
pointer (0-511) and <Rec>= record number (0-32767). If only one byte
is sent, the pointer is set at the start of the file and its handle
and length are returned as a response, on five bytes
- 'Get long name' returns the long name of the last file found using
the 'Find [next] file' command

5.2.3 The 'Find [next] file' command returns a 16-bytes descriptor:

Offset Length Description

0 1 Actual file type (0-11)
1 10 Actual file name
11 2 Invalid file handle (255)
13 3 File length

5.2.4 The descriptor returned by the 'Open temporary|permanent
[next] file'command contains also the file handle

Offset Length Description

0 1 Actual file type (0-11)
1 10 Actual file name
11 2 File handle (0-15)
13 3 File length

5.2.5 The handle returned by the 'Create temporary|permanent file'
command is a two-byte number in the range 0-15.
- After a 'Find file' or 'Open temp. file' command, a subsequent 'Find
next file' or 'Open next file' command will attempt to find/open the
next file with a matching name.

5.2.6 A copy|rename operation requires two steps:
- The source file is found by issuing a 'Find [next] file' command.
- The destination name is specified in a 'Rename file' or 'Copy
file' command.

5.4.7 The list returned by the 'First|Next file list' command consists
of a sequence of 16-bytes file descriptors, as returned by the 'Find
[next] file' command, with #FF as an end marker. The descriptors
returned by the 'First|Next BASIC file list' command contain, for file
types 0-3, also information from the 9-byte BASIC header of the files:

Offset Length Description

0 1 File type (0-3)
1 10 File name
11 1 File type (from BASIC header)
12 2 File length
14 2 Start line (Program), or

Array name (Numeric or String), or
Loading address (Code)

--

5.2.7 'First long list line' and 'Next long list line' are similar to
'First directory list' and respectively 'Next directory list' but return
a single directory list line with the following layout:

Col Length Description

0 1 File type literal
1 1 " " (space) character
2 1-253 Long filename

6. Hook Codes

The ZX INTERFACE 1 hook codes.
--
Nr Label Description
--
#1B WAI_KY Console input
#1C S_PRNT Console output
#1D BCHN_I R232 input
#1E BCHN_O R232 output
#1F L_PRNT Printer output
#20 TST_KY Keyboard test
#21 SET_DN Select drive
#22 OPN_CH Open channel
#23 CLO_CH Close channel
#24 ERAS_F Delete file
#25 RD_SQE Read sequential
#26 WR_SQE Write sequential
#27 RD_REC Read random
#28 RD_CSC Read sector
#29 NX_CSC Read next sector
#2A WR_CSC Write sector
#2B CRE_CH Create channel
#2C DEL_CH Delete channel
#2D OPEN_N Open network channel
#2E CLOS_N Close network channel
#2F GET_PK Get packet
#30 SND_PK Send packet
#31 PA_INI Create system variables
#32 EXEC_C Call shadow ROM routine
#33 Read next header - Not implemented
#34 OPEN_B Open B channel
--

Additional hook codes
--
Nr Label Description
--
#35 RD_SEC Read sector
#36 WR_SEC Write sector
#37 NEXT_R Next sector
#38 RCLM_A Reclaim 'ad-hoc' channels
#39 FIND_F Find file
#3A FILE_N Find next file
#3B OPEN_S Open stream
#3C CLOS_S Close stream
#3D SAV_LD SAVE / LOAD / VERIFY / MERGE
#3E MOVE_E Copy file or Set file pointer
#3F CAT_LG Catalogue of a directory
#40 FORM_T Format drive
#41 CLR_SC Clear screen
#42 CLOS_A Close all streams
#43 SV_CMD Custom peripheral command
#44 A_PATH Get absolute path
#45 DIR_FL Get first directory list
#46 DIR_NL Get next directory list
#47 PR_INT Print 3-byte integer
#48 NDT_CM Send command only
#49 DAT_CM Send data command
#4A DEV_PA Get device size
#4B ASY_RX Serial port Receive
#4C ASY_TX Serial port Transmit
#4D GET_LN Read line from M channel
#4E PUT_LN Write line to M channel
#4F DV_PRE Check device presence
#50 NET_RX Ethernet Receive
#51 NET_TX Ethernet Transmit
#52 LONG_N Get long name
--
- A 'File type literal' is a character as defined at (3.4)
- A 'Device type literal' is a character as defined at (3.2)
- A 'Device code' is a byte defined as:

Bits 0-2: Device (station) number (0-7)
Bit 3 ; 0
Bits 4-6: 'Device type' (0-7) as defined at (3.2)
Bit 7 : 1

6.1 Console input (#1B)
6.1.1 Action: Wait for a key to be pressed
6.1.2 Input data: None
6.1.3 Output data:

- (A) = Character code

6.2 Console output (#1C)
6.2.1 Action: Send a character to the screen
6.2.2 Input data:

- (A) = Character code
6.2.3 Output data: None

6.3 RS232 input (#1D)
6.3.1 Action: Receive a character from the RS232 output

Times out after 1 second
6.3.2 Input data: None
6.3.3 Output data:

- CY = A character has been received
- (A) = Character code

6.4 RS232 output (#1E)
6.4.1 Action: Send a character to the RS232 output

Wait indefinetly
6.4.2 Input data:

- (A) = Character code
6.4.3 Output data: None

6.5 Printer output (#1F)
6.5.1 Action: Print a character to the printer
6.5.2 Input data:

- (A) = Character code
6.5.3 Output data: None

6.6 Keyboard test (#20)
6.6.1 Action: Test if a key is being pressed
6.6.2 Input data: None
6.6.3 Output data:

- CY = A key is being pressed

6.7 Select drive (legacy) (#21)
6.7.1 Action: Set drive (A) as current for device (DEV_LT)
6.7.2 Input data:

- (A) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code

6.7.3 Output data: None

6.8 Open channel (#22)
6.8.1 Action: Open a channel.
6.8.2 Input data:

File channel
- (A) = #BF (IN) - Open for read

= #DE (OVER) - Overwrite
= #DF (OUT) - Open for write
= #A5 (RND) - Create a file handle

- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Non-file channel
- (DRV_NR) = Station number (0-7) only for channel N
- (DEV_LT) = Channel type: B, T, N or U
- (NAM_LN) = Invalid name length (0 or 255)

6.8.3 Output data:
- (HL) = Channel offset
- (IX) = Address of the channel descriptor

6.9 Close channel (#23)
6.9.1 Action: Close a channel
6.9.2 Input data:

- (IX) = Address of the channel descriptor
6.9.3 Output data: None

6.10 Delete file (#24)
6.10.1 Action: Delete a file

6.10.2 Input data:
File parameters, specified by a descriptor or a handle
Descriptor:
- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Handle:
- (STR_NR) = Handle (0-15)
- (NAM_LN) = Invalid name length (0 or 255)

6.10.3 Output data: None

6.11 Read sequential (#25)
6.11.1 Action: Read the next record
6.11.2 Input data:

- (IX) = Address of the channel descriptor
6.11.3 Output data: None

6.12 Write sequential (#26)
6.12.1 Action: Write the current record
6.12.2 Input data:

- (IX) = Address of the channel descriptor
6.12.3 Output data: None

6.13 Read record (#27)
6.13.1 Action: Read the current record
6.13.2 Input data:

- (IX) = Address of the channel descriptor
6.13.3 Output data: None

6.14 Read sector (legacy) (#28)
6.14.1 Action: Read sector CHREC into channel buffer
6.14.2 Input data:

- (IX) = Address of the channel descriptor
6.14.3 Output data:

6.15 Read next sector (legacy) (#29)
6.15.1 Action: Read next sector into channel buffer
6.15.2 Input data:

- (IX) = Address of the channel descriptor
6.15.3 Output data:

6.16 Write sector (legacy) (#2A)
6.16.1 Action: Write channel buffer to sector CHREC
6.16.2 Input data:

- (IX) = Address of the channel descriptor
6.16.3 Output data:

6.17 Create channel (#2B)
6.17.1 Action: Create a channel descriptor
6.17.2 Input data:

File channel
- (A) = #BF (IN) - Open for read

= #DE (OVER) - Overwrite
= #DF (OUT) - Open for write
= #A5 (RND) - Create a file handle

- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Non-file channel
- (DRV_NR) = Station number (0-7) only for channel N
- (DEV_LT) = Channel type: B, T, N or U
- (NAM_LN) = Invalid name length (0 or 255)

6.17.3 Output data:
- (HL) = Channel offset
- (IX) = Address of the channel descriptor

6.18 Delete channel (#2C)
6.18.1 Action: Delete a channel descriptor
6.18.2 Input data:

- (IX) = Address of the channel descriptor
6.18.3 Output data: None

6.19 Open network channel (#2D)
6.19.1 Action; Create a N channel
6.19.2 Input data: None
6.19.3 Output data:

- (HL) = Channel offset
- (IX) = Address of the channel descriptor

6.20 Close network channel (#2E)
6.20.1 Action; Send bufferd data and delete a N channel

descriptor
6.20.2 Input data:

- (IX) = Address of the channel descriptor
6.20.3 Output data: None

6.21 Get packet (#2F)
6.21.1 Action; Receive a packet of 255 bytes into a

N channel. Times out after 1 second
6.21.2 Input data:

- (IX) = Address of the channel descriptor
6.21.3 Output data:

- CY = Time-out

6.22 Send packet (#30)
6.22.1 Action: Send a packet of maximum 255 bytes from

a N channel. Wait indefinetly
6.22.2 Input data:

- (IX) = Address of the channel descriptor
6.22.3 Output data:

6.23 Create system variables (#31)
6.23.1 Action: Create system variables
6.23.2 Input data: None
6.23.3 Output data: None

6.24 Execute code (#32)
6.24.1 Action: Execute code from address (HD__11)
6.24.2 Input data:

- (HD__11) = Address of the executable code
6.24.3 Output data: None

6.25 Read next header (#33)
6.25.1 Action: Not implemented
6.25.2 Input data: None
6.25.3 Output data: None

6.26 Create B channel (#34)
6.26.1 Action: Create a B channel
6.26.2 Input data: None
6.26.3 Output data:

- (HL) = Channel offset
- (IX) = Address of the channel descriptor

6.27 Read sector (#35)
6.27.1 Action: Read sector into buffer.

- Does not apply to file devices
6.27.2 Input data:

- (BC) = Sector Number (0-65535)
- (HL) = Buffer address (0-65536)
If CY reset:
- (A) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code

6.27.3 Output data: None

6.28 Write sector (#36).
6.28.1 Action: Write sector from buffer.

- Does not apply to file devices
6.28.2 Input data:

- (BC) = Sector Number (0-65535)
- (HL) = Buffer address (0-65536)
If CY reset:
- (A) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code

6.28.3 Output data: None

6.29 Next sector (#37).
6.29.1 Action: Find the sector number of the next record of a file.

- Initially it should be called with (BC)=0 to flush the FAT
buffer.

- Does not apply to file devices
6.29.2 Input data:

- (BC) = Sector number (0-65535)
If CY reset:
- (A) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code

6.29.3 Output data:
- Zero flag set = No more records
- (BC) = Next sector number (0-65535)

6.30 Reclaim all 'ad-hoc' channels (#38).
6.30.1 Action: Reclaim all channels not associated with streams.
6.30.2 Input data: None
6.30.3 Output data: None

6.31 Find file (#39).
6.31.1 Action: Find a file or directory.
6.31.2 Input data:

File parameters, specified by a descriptor or a handle
Descriptor:
- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Handle:
- (STR_NR) = Handle (0-15)
- (NAM_LN) = Invalid name length (0 or 255)

6.31.3 Output data:
- CY = File not found
- (HL) = Pointer to the file descriptor

6.32 Find next file (#3A).
6.32.1 Action: Find the next file with a name matching the one

specified in a previous 'Find file' call
6.32.2 Input data: none
6.32.3 Output data:

- CY = File not found
- (HL) = Pointer to the file descriptor

6.33 Open stream (#3B).
6.33.1 Action: Open a stream or handle..
6.33.2 Input data:

File channel
- (A) = #BF (IN) - Open for read

= #DE (OVER) - Overwrite
= #DF (OUT) - Open for write
= #A5 (RND) - Create a file handle

- (DRV_NR) = Drive number (1-255)
- (STR_NR) = Stream or handle number (0-15).
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Non-file channel
- (DRV_NR) = Station number (0-7) only for channel N
- (STR_NR) = Stream number (0-15).
- (DEV_LT) = Channel type: B, T, N or U
- (NAM_LN) = Invalid name length (0 or 255)

6.33.3 Output data: None.

6.34 Close stream (#3C).
6.34.1 Action: Close a stream or a handle.
6.34.2 Input Data:

- (A) = Stream or handle number (0-15)
6.34.3 Output data: None

6.35 SAVE / LOAD (#3D).
6.35.1 Action:

- Read/Write memory contents from/ to a file.
- Create (SAVE) / change (LOAD) directory.
- Close the 'input tape', 'output tape' or 'snapshot file'

6.35.2 Input data:
Operation type:
- (A) = 0,4 - SAVE , Clear file pointer and SAVE

= 1,5 - LOAD , Clear file pointer and LOAD
= 2,6 - VERIFY, Clear file pointer and VERIFY
= 3,7 - MERGE , Clear file pointer and MERGE
= 8 - Close the output tape
= 9 - Close the input tape
= 10 - Close the snapshot file

File parameters, specified by a descriptor or a handle
Descriptor:
- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Handle:
- (STR_NR) = Handle (0-15)
- (NAM_LN) = Invalid name length (0 or 255)
Data type code
- (HD__00) = File type number as defined at (3.4)

If not 7 (binary data), overridden by the
specified file type literal.

Parameters of BASIC program, only for data type: 0
- (HD__11) = Auto-run line number
Parameters of BASIC array, only for data types: 1 & 2
- (HD__0F) = Array name ("a"-"z").
Address of memory block, only for data types: 3 - 7
- (HD__0D) = Address of memory block.
Length of memory block, only for data types: 3 - 7
- (HD__0B) = Length of memory block.
File pointer, only for data types: 4 - 7
- (HD__0F) = Record pointer (0-511)
- (HD__11) = Record number (0-32767)
The pointer is automatically updated after the operation

6.35.3 Output data: None

6.36 Copy /rename file (#3E).
6.36.1 Action: Copy or rename files / rename directory
6.36.2 Input data:

Operation type (only for two file channels):
- (A) = #CC (TO) - Copy

= #AC (AT) - Rename
= #DE (OVER) - Copy Overwrite
= #BF (IN) - Rename Overwrite
= #D5 (MERGE) - Append

Source: specified by a stream or a channel
Stream:
- (STR_NR) = Stream number (0-15)
- (NAM_LN) = Invalid name length (0 or 255)
File channel:
- (DRV_NR) = Drive number (1-255)
- (STR_NR) = 255
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)
Non-file channel:
- (DRV_NR) = Station number (0-7) only for channel "N"
- (STR_NR) = 255
- (DEV_LT) = Channel type: B, T, N or U
- (NAM_LN) = Invalid name length (0 or 255)
Destination, specified by a stream or a file descriptor
Stream:
- (STR_N2) = Stream number (0-15)
- (NAM_L2) = Invalid name length (0 or 255)
File channel:
- (DRV_N2) = Drive number (1-255)
- (STR_N2) = 255
- (DEV_L2) = Device type literal or device code
- (NAM_L2) = Length of filename (1-254)
- (FIL_T2) = File type literal
- (NAM_A2) = Address of filename (0-65535)
Non-file channel:
- (DRV_N2) = Station number (0-7) only for channel "N"
- (STR_N2) = 255
- (DEV_L2) = Channel type: B, T, N or U
- (NAM_L2) = Invalid name length (0 or 255)

6.36.3 Output data: None

6.37 Get file pointer (#3E).
6.37.1 Action: Get the file pointer of a M or H channel

to which a given stream is opened.
6.37.2 Input data:

- (A) = Operation type: #B0 (VAL)
Channel, specified by its address or stream number
Channel address:
- (STR_NR) = Invalid stream number (16-255)
- (IX) = Channel address (0-65535)
Stream number:
- (STR_NR) = Stream number (0-15)

6.37.3 Output data:
Channel pointer:
- (HD__0F) = Record pointer (0-511)
- (HD__11) = Record number (0-32767)

6.38 Set file pointer (#3E).
6.38.1 Action: Set the file pointer of a M or H channel

to which a given stream is opened.
6.38.2 Input data:

- (A) = Operation type: #A9 (POINT)
Channel, specified by its address or stream number
Channel address:
- (STR_NR) = Invalid stream number (16-255)
- (IX) = Channel address (0-65535)
Stream number:
- (STR_NR) = Stream number (0-15)
Channel pointer:

- (HD__0F) = Record pointer (0-511)
- (HD__11) = Record number (0-32767)

6.38.3 Output data: None

6.39 Catalogue (#3F).
6.39.1 Action: Produce a file catalogue.
6.39.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (STR_NR) = Stream number (0-15)
- (DEV_LT) = Device type literal or device code
- (NAM_LN) = Invalid name length (0 or 255)
A directory or file name may be specified to be used as a
filter for command's output
- (NAM_LN) = Length of name (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of name (0-65535)

6.39.3 Output data:
- (HD_0D) = Number of files catalogued
Cumulated length of catalogued files
- (HD_0F) = lower word
- (HD_11) = upper word

6.40 Format logical drive (#40).
6.40.1 Action: Format logical drive

- Does not apply to file devices
6.40.2 Input data:

- (A) = Drive number (1-255)
- (STR_NR) = Cluster size: 2, 4, 8 or 16
- (DEV_LT) = Device type literal or device code
Or
- (A) = 0
- (STR_NR) = Number of reserved logical drives
- (DEV_LT) = Device type literal or device code

6.40.3 Output data: None

6.41 Clear Screen (#41)
6.41.1 Action: Same as the extended BASIC 'CLS #' Command
6.41.2 Input data: None
6.41.3 Output data: None

6.42 Close all streams (#42)
6.42.1 Action: Same as the extended BASIC 'CLEAR #' command
6.42.2 Input data: None
6.42.3 Output data: None

6.43 Peripheral Module Command (#43)
6.43.1 Action: Sends a command to the server or the peripheral

controller and prints the response as hex-dump
6.43.2 Input data:

- (BC) = Length of command string
- (HL) = Address of command string
- ZR = Server - /Peripheral module
- CY = Print hex-dump

6.43.3 Output data: None

6.44 Get absolute path (#44).
6.44.1 Action: Get parameters of absolute path name
6.44.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
Relative path name
- (NAM_LN) = Length of filename (1-254) or

Zero for the current directory
- (NAM_AD) = Address of filename (0-65535)

6.44.3 Output data: Absolute path name in BUFF_3 (3.5.1)
- (HL) = Address of absolute file name
- (BC) = Length of absolute file name

6.45 Get first directory list (line) (#45).
6.45.1 Action: Get the first directory list or list line

specified 5.4.7 and 5.4.8
6.45.2 Input data:

- (A) = List type, only for file devices
= 0 Regular file list
= 1 With BASIC header information
= 2 Long name list line

- (DRV_NR) = Drive number (1-255)
- (DEV_LT) = Device type literal or device code
Relative path name
- (NAM_LN) = Length of directory name (1-254) or

Zero for the current directory
- (NAM_AD) = Address of directory name (0-65535)

6.45.3 Output data: First directory list/line in BUFF_3

- (HL) = Address of first directory list/line
- (BC) = List/line length
- (DE) = 0, for the root directory

6.46 Get next directory list (line) (#46).
6.46.1 Action: Get the next directory list or list line,
6.46.2 Input data: none
6.46.3 Output data: Next directory list/line in BUFF_3

- (HL) = Address of next directory list/line
- (BC) = List/line length

6.47 Print integer (#47).
6.47.1 Action: Print the 3-byte integer (A) (DE)

on 3, 6 or 8 digits with leading spaces
6.47.2 Input data:

- (DE) = Lower bytes
- (A) = Upper byte
- The flags specify the number of digits and the
count & add option:

ZR CY Width Used for

reset reset 3 Drive number
reset set 6 Address
set reset 8 File length
set set 8 File length with

count & add

6.47.3 Output data:
If both ZR and CY are set, the printed
numbers are counted in (HD__0D) and their
sum is calculated in (HD__0F and HD__11)

6.48 Send command only (#48)
6.48.1 Action: Send only a command code to the peripheral

controller.
6.48.2 Input data:

- (A) = Command code
- (HL) = Response address (0-65535)

6.48.3 Output data:
- CY = Error
- (A) = Error code or 0 if no error
- (HL) = Response address

6.49 Send data command (#49)
6.49.1 Action: Send and receive data to/from the

peripheral controller.
6.49.2 Input data:

- (A) = Command code
- (HL) = Data block address (0-65535)
- (BC) = Length of data block (0-512)
- (DE) = Response address (0-65535)

6.49.3 Output data:
- (A) = Error code
- (HL) = Response address
- (BC) = Response length

6.50 Get device size (#4A)
6.50.1 Action: Get the parameters of the current device
6.50.2 Input data: None
6.50.3 Output data:

- (H) = Available volume size, in logical drives
- (L) = Number of reserved logical drives

or #FF for RAM drive and file devices
- (BC) = Actual SD card size, in logical drives

6.51 Serial port Receive (#4B)
6.51.1 Action: Receive from RS 232 port into buffer.

The function times out after 1 second,
returning 0 bytes

6.51.2 Input data:
- (C) = Number of bytes (1-256)
- (HL) = Buffer address (0-65536)

6.51.3 Output data:
- (C) = Number of bytes received (0-240)

6.52 Serial port Transmit (#4C)
6.52.1 Action: Transmit to RS 232 port from buffer.

The function times out after 12 seconds,
signaling: 'Communication error'

6.52.2 Input data:
- (BC) = Number of bytes (1-512)
- (HL) = Buffer address (0-65536)

6.52.3 Output data: None

6.53 Read line from "M" channel (#4D)
6.53.1 Action: Read a line, terminated with a CR (#0D),

if CY is reset, or otherwise a block of maximum
(BC) bytes from the "M" channel at (IX) to the
buffer at (DE)

6.53.2 Input data:
- (IX) = Channel address
- (BC) = Maximum number of bytes (0-65536)
- (DE) = Buffer address (0-65536)
- CY = Do not check for line end (CR)

6.53.3 Output data:
- Zero flag set if (BC) = 0
- (BC) = Number of bytes read (1-65536)

6.54 Write line to "M" channel (#4E)
6.54.1 Action: Write a line, terminated with a CR (#0D),

if CY is reset, or otherwise a block of maximum
(BC) bytes from the buffer at (HL) to the "M"
channel at (IX)

6.54.2 Input data:
- (IX) = Channel address
- (BC) = Maximum number of bytes (0-65536)
- (HL) = Buffer address (0-65536)
- CY = Do not check for line end (CR)

6.54.3 Output data: None

6.55 Check device presence (#4F)
6.57.1 Action: Check if device (A) is present
6.55.2 Input data:

- (A) = Device code
6.55.3 Output data:

- ZR = Device is present
- CY = Block device

6.56 Ethernet Receive (#50)
6.56.1 Action: Receive a block of maximum (C) bytes

from station (A). Time out after 12 second
6.56.2 Input data:

- (A) = Station number (1-7)
- (C) = Number of bytes (1-255)
- (HL) = Buffer address (0-65536)

6.56.3 Output data:
- CY = time-out
- (C) = Number of bytes received (0-255)

6.57 Ethernet Transmit (#51)
6.57.1 Action: Transmit a block of maximum 255 bytes

to station (A). Time out after 12 second
6.57.2 Input data:

- (A) = Station number (1-7)
- (C) = Number of bytes (1-255)
- (HL) = Buffer address (0-65536)

6.57.3 Output data:
- CY = time-out

6.58 Get long name (#52)
6.58.1 Action: Get the long name of the last found

file on a file device or the contents of the
last found 'LNF' auxiliary file on a block
device, in the buffer (HL)

6.58.2 Input data:
- (HL) = Buffer address (0-65536)

6.58.3 Output data:
- CY = Error - no name returned

